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Scattering From a Lossless Sphere 

Xi (Ronald) Chen; Carl E. Baum, 
Thomas Hagstrom and Edl Schamilogln 

March 13, 2009 

Abstract 

We study fundamental issues in electromagnetic scattering theory, 
with an emphasis on pole behaviors of a lossless sphere arising from 
the singularity expansion method (SEM). Wc use Mie Theory to solve 
the acoustic and electromagnetic scattering problems for spheres with 
lossless boundary conditions and an incident plane wave. Wc show 
that for certain lossless sheet impedance boundary conditions there 
exist second order poles for both cases. Our general procedure to 
directly construct lossless sheet impedance boundary conditions which 
will produce high order poles is discussed as well as the difficulties 
to which it leads. In the electromagnetic scattering case, Foster's 
Theorem is imposed on the impedance condition to ensure that a 
lossless scattering problem is obtained. Wc also study the validity of 
the forward-scattering theorem associated with SEM. 
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1     Introduction 

The singularity expansion method (SEM) [2] was introduced in 1971 as a 
way to represent the solution of electromagnetic interaction or scattering 
problems in terms of the singularities in the complex-frequency (s of two- 
sided-Laplace-transform) plane. Particularly for the pole terms associated 
with a scatterer (natural frequencies), their factored form separates the de- 
pendencies on various parameters of the incident field, observer location, 
and scatterer characteristics, with an equally simple form in both frequency 
(poles) and time (damped sinusoids) domains. 

The forward-scattering theorem is a classical result in electromagnetic 
theory. A recent paper [4] has generalized the forward-scattering theorem 
with particular application to lossless bodies. From the forward-scattering 
theorem we have relations between the absorption and scattering cross sec- 
tions, and the forward scattering. The scattered fields are represented by a 
scattering dyadic times the incident plane wave. This allows one to refor- 
mulate the results in terms of the scattering dyadic, exhibiting some general 
characteristics of this dyadic. It is extended (for lossless scatterers) by ana- 
lytic continuation away from the ju axis out into the complex s plane and 
applied to poles in the singularity expansion method. In particular this gave 
new insight into the scattering natural frequencies and modes, also implying 
new ways to calculate them from the scattering operator in the right half of 
the complex s—plane. This gives new insight into the properties of the poles 
(natural frequencies, sa) in the left-half plane and the associated natural 
scattering modes. 

Although in practice, we only encounter the first order scattering poles, an 
interesting question concerning the SEM and the forward-scattering theorem 
concerns the existence of higher order scattering poles. Carl Baum showed 
that 2nd order poles can be constructed for a transmission line problem [6]. 
Since the transmission line problem is finitely dimensioned, we can actually 
use the scattering matrix to find the poles (i.e. the eigenvalues). However, in 
general the problem is infinitely dimensioned. Thus, we consider a classical 
model problem, scattering from a sphere with an incident plane wave. We 
compute the exact solution using Mie Theory. In [2], Carl Baum showed that 
for a perfectly conductor sphere, there only exist first order poles. Saucer 
[12] also proved some similar results for a general shape scatterer. 

We show that for the acoustic scattering problem high order poles can 
be constructed for certain impedance boundary conditions, while for hard 



and soft spheres there only exist first order scattering poles. The general 
procedure to construct arbitrary order poles is discussed as well the nec- 
essary condition for the conservation of energy to the scattering problem. 
For electromagnetic scattering from a sheet impedance loading sphere, we 
show that there exist 2nd order poles. Foster's Theorem is imposed on the 
impedance condition to ensure the scatterer is lossless. The existence of a 
2nd order pole for a transmission line scattering problem is included in sec- 
tion 4. Some analytical and numerical treatment of the forward-scattering 
theorem is presented in section 5. 

2     Scattering from a lossless acoustic sphere 

2.1 Introduction 

In this section, we are considering the following problem. An incident plane 
sound wave is propagating in some direction with the scatterer being a sphere. 
The scattered solution can be written explicitly using spherical harmonics. 
However, the thing we are really interested in is to explicitly solve the prob- 
lem using SEM and to study the scattering pole behavior of the solution. 
By putting different boundary conditions on the scatterer, we are able to 
construct not only simple poles but also 2nd or even higher order poles. 
Meanwhile, we always keep the impedance function satisfying the Foster's 
Theorem, so that it remains a lossless system. 

2.2 Formulation of the acoustic scattering problem 

Considering the linear acoustic equation [11] 

^ + A)V-<, = 0 (1) 

A)T^ + Vp = 0 (2) 

2 2 (&P\ 
p=cp ' c =u 

where p is for acoustic pressure, p is for density, v is for fluid velocity, c 
is the speed of sound.   We want to solve for the scattering solution to the 



Figure 1: 
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above equation with an ineident plane wave and some different but lossless 
boundary conditions on the sphere. We will use the expansion in terms of 
spherical harmonics to solve the equation in order to locate the poles. In 
fact, this is just the SEM in the acoustic case. Let's first derive the wave 
equation from the system above, so that later on we will treat the problem 
mathematically, temporarily disregarding its physical meaning. Plugging 
p = c2p into (1) we get 

^ + Poc
2V-v = 0 (3) 

ot 
dv     „ 

Po—+ Vp = 0 (4) 

if we 4T- (3) and plug in (4), we get 



d2v i £| + /9oV.(—vP) = o 
at1 po 

dt2 c
2V2p = 0 (5) 

oi- 

_    I A\     onn   nln rr  11 

d2v 

=>     g-c2V(V-,)=0 

assume v is irrotational i.e. V x v = 0, then V(V • v) = V2v. We get 

d2v 

similarly for v, we i- (4), and plug in (3) we get 

^ + -V(-Poc2V -v)=0 
at/      pQ 

dt2 

Thus if u is either p or f, 

c2V2r = 0 (6) 

<92U o^o 

Taking the Laplace transformation we get 

,s 
(V2 - 72)u = 0,     where    -y = (7) 

c 

Assume the scatterer is a ball with radius 1 and impedance boundary 
condition of the following form 

du 
— + a(s)u = 0    ,    at    r = 1 (8) 
on 

where n is the outward normal. 
Assume the incident plane wave is in the ^-direction i.e. 

y(inc) _ e-7(0,0,l)(x,y,z)  _ £-7Z nj\ 

We want to solve scattered solution n^sc)explicitly according to (7) (8) (9) 
and study the pole behavior of the scattered solution u^sc\ 



2.3    Hard and soft spherical scatterer 

First of all, we want to relate the mathematical impedance function a(-y) 
to the actual acoustic impedance Za(s). Units of acoustic impedance are 
Pa • s/m or kg/{m2 • s) By definition 

v i x P(r,s) /   ft   \i 
Za(s) = -  = paV{s) =     TT—• 

v[r,s)-nm U:a(s)' 

where p, v are the Laplace transforms of p and v, and rijn is the inward 
normal. Take the Laplace transform of (2), we get sv+ — Vp = 0. And then 
take the inner product with outward normal direction n , we get 

1 dp 
sv • n-\ — = 0 

pa on 
dp 

^f — = -p0sv -n (10) 

Then acoustic impedance can be written as 

z(s) = ~ = a-Pos 

In our formulation, if we plug (10) into (8), assuming we put the impedance 
on pressure(i.e. u = p here), we derive 

P P°S 71   \ Z(s) 
v • nin a(s) 

which relates the mathematical impedance condition to the real acoustic 
impedance boundary condition. 

The infinite specific-acoustic-impedance limit \Z\ —> oc corresponds 
to a hard(rigid) surface, the limit \Z\ —* 0 corresponds to a soft (pressure- 
release) surface. Thus, for a hard sphere the mathematical impedance bound- 
ary conditions become |^ = 0 and u = 0 for the soft sphere. 

For detailed computation of the following please see section 5. 

oo 

fi(i~) = e-yz = e-7rcos6 = J2(2n + l)(-l)nin(ir)Pn(cos6) 
n=0 



oo    m=n 

«(sc) = E E anMKMY^e,?) 
n=0 m= — n 

X 

=   ^an(7)fcn(7r)Pn(cos0) 
n=0 

Where A;„(s) is the modified Bessel's function, a„(7) is a coefficient to be 
determined. 

Applying the impedance boundary condition for hard and soft spheres 
respectively, at r = 1 

8fi{sc) f)ii{inc) OU
hard  _       OUhard 

dn dn 

-(sc) - (trie) 
Usoft — ~Usoft 

n is the outward normal, i.e. r in our case(sphere). 
We derive the scattered solutions as follows 

7( = 0 

oo 

7*4(7) 

(-l)n+1(2n + l)[7t„(7)] -(sc) 
Usoft        ^ k    /    ) 

n=0 nV'; 

E '     '      77;n7t"l7JJU7r)Pn(cos0) 

Since the modified spherical Bessel functions kn and their derivatives only 
have simple zeros [2], for both the hard and soft sphere scatterer, the solution 
only has simple poles. 

2.4    Lossless impedance loading of a sphere 

Consider the total energy in the usual mathematical way 

D 



dED f  f  f „ T   „ ——   = ututt + Vu   • Vu( 

D 

=    /   /     Ut{utt-V
2u)+ / utu„ 

D 3D 

UtUv 

and the net energy flux is 

i>( 
or 

8D 

where in our case I) is a sphere. Plugging in our impedance boundary con- 
dition, the net energy flux becomes 

sa(s)\u(y,s)\' 

on 

For a lossless case, the total energy change should be zero, which implies 
/^~o(ll)=0=>(ll) should be odd => a{s) should be even, Z(s) odd. Math- 

ematically, this condition is necessary to guarantee that energy is conserved. 
However, in order to extend our results later on, we need more constraints 
on Z(s) or equivalently on a(s). Namely, we want Z(s) to satisfy the Foster 
reactance theorem which we will discuss a little bit later. 

2.5    High order poles 

2.5.1    2nd order poles 

The general expansion (see section 5 for more details about the calculations) 
of the scattered solution can for our impedance condition can been written 
as 

~h a(s)kn(s) + sk'n(s) kn(sr)Pn(cose) 

Assume c — 1 here, so 7 = s 



The far field pattern of the solution is 

.M _ e~sr ^ (-ir+l(2n + l)la(s)in(s) + si>n(s)} 
00 s(a(s)Us) + sk'Js)) ^cost/; 

71 = 0 

In order to construct a second order pole we need both the denominator 
and the derivative of the denominator for the scattered solution to be zero 
at some specific s. 

That is, the denominator=0 

sa(s)kn(s) + s2^-ku(s)=0 (12) 
as 

and the derivative of the denominator—0 

a (s) kn {s)+s (—a (a) J k„ {s)+sa (s) — kn (s)+2 s — kn (s)+s2 — k„ (s) = 0 

(13) 
Note that we do not want to solve the above system of ODEs, because 

we only need the equations to hold at one specific s for some pre-chosen 
impedance boundary condition a(s) 

By using Bessel's equation itself we can replace 

s2^-2K (a) = 2 s^-kn (a) - (s2 + n (n + 1)) kn (a) 
as1 as 

Solve (12) for j-gkn (s) and plug into (13), we get 

kn (s) (a (jg* (a) J + a(s) - a (s)2 + .s2 + n + n) = 0 

for kn(s) ^ 0 we want 

sa + sz + a + n(n + 1) - a1 = 0 

Choose n = l,fci(s) = § ^e~s 

Solve (12) for a(s), we get 

s2 + 2 a + 2 
a(a) 

8 + 1 



Solve (13) for a'(s), we get 

s(s + 2) 
a'(s) = 

s2 + 2 s + 1 

Note: We can not differentiate a(s) here, since it's just the value evaluated 
at s, not a function. 

The solution we derived above simply means that, if we want to construct 
a 2nd order pole at s, the impedance function a(s) should be chosen 

1. a(s) Even function 

2. Value of a(s) at s equals '2+*j+2 

3. Value of a'(s) at s equals J^s+i • 

Let's build a concrete example to verify the above results. 
Choose s = —2, then a(s) = —2, a'(s) = 0 
Assume a(s) has the following form 

a(s) = 
c.\ + c2s

2 

1 + c3s
2 

after some calculation we get a(s) = —2 
The denominator of the scattered solution u^ for n = 1 is 

-2sh(s) + s2k[(S) = g(5 + 2)2
e- 

2       s 

Thus, we have a 2nd order pole at s = — 2. 

2.5.2    3rd order poles 

The process is similar to the 2nd order pole case.   We want denominator, 
denominator',denominator" =0 at some s. 

sa{s)kn(s) + s2—kn(s) = 0 (14) 
as 

a (s) kn (,s)+.s (-^-a (a) J fcn (s)+sa (s) ^fcn (.s)+2s-^A;n (s)+s
2—fc„ (s) = () 

(15) 

10 



2 (-^a (s) j kn (s) + 2a(s) —k„ (s) + s (-^a (s)j kn (s) + 2s (^-a (s)J ^-A„ (s) 

d2 d d2 d3 

+ sa (s) — kn (s) + 2 — kn (s) + 4 s—kn (s) + s2^kn (s) = 0 (16) 

By computing the derivative of Bessel's equation we get 

(/3 d2 d d 
s2
T1kn(s) = -4s—kn{s)-2—kn(s)+2skn(s) + (s2 + n(n + l)) —kn{s) 
ds6 ds* ds ds 

together with 

d2 d 
ds 

and 

d a(s) kn (s) 
—kn{s) =  
ds s 

equation (15), (16) reduce to 

k„ (s) (a (s) + s—a (s) - (a (s)f + s2 + n2 + n J = 0 (17) 

kn (s) (2 ^a (s) + s-^a (5) - 2 (^a(s) J a(s) + 2sJ =0 (18) 

solve (14), (17), (18) for a, a', a" respectively, we get 

a(s) = _*sM«) 
fcn (s) 

,, >_      -5 (£*:„ (s)) A-„ (s) - s2 {£kn (s))2 + s2 (kn (s))2 + n2 (fc„ (s))2 + n (k„ (s))' 

s{kn(s)) 

11 



a"(s)   =   2{-s(J-skn(s)Ykn(s))2-2kn(S)S
2(J-skn(s)\   + n2 (k7l (s)f 

+   n(kn(s))3-s3(J-skn(s)\   +s3(J-skn(s)ykn(s))2 

+   s (jkn {s)\ n2 (kn (s))2 + s (jK (s)\ n (ku (s))2}/s2 (kn (s))3 

Choose n = 2, k2(s) = \ ——^5—-—-, we get 

s3 + 4s2 + 9s + 9 
a(s) = 

a'(s) = 

Q"(.S) = 

s2 + 3s + 3 
s(s3 + 6s2 + 12s + 6) 

(s2 + 3s + 3)2 

6(3 + s3 + 6s2 + 9s) 
(s2 + 3s + 3)3 

Again, the solution we derived above simply means that, if we want to 
construct a third order pole at s, the impedance function a(s) should be 
chosen 

1. a(s) Even function 

2. Value of a(s) at s equals ^^f9 

3. Value of a'(s) at s equals ^^It+l)^ 

4. Value of a"(s) at s equals 6(:ffl+3a
6+3|39s) 

Let test our results again with s = — 4.   Thus, we require a(—4) = — y, 
a'("4) = §, a"(-4) = -& 

Assume a(s) still has the following form 

Cj + c2s
2 

a s) = TT 5" 1 + c3s
2 

12 



we get 
_!Z_i!s2 _11/'s2+94l 

a(s) = -27 

. -I- ^s2 s2 + 54 

The denominator of the scattered solution u^c) for n = 2 is 

ire-s(s2 + 3s + l2){s + 4)3 

2 s2 (54 + s2) 

Thus, we have a 3rd order pole at s = —4. 

2.5.3     Aribitrary order poles 

In principle, we can follow this procedure to get poles of any high order at 
any specific location. However, the computation will become messier and 
messier. It will become more clear to construct high order poles if we try to 
view this process using Taylor expansion around the pole sp. 

First, let's introduce some very nice properties of the modified Bessel 
function [9]. 

-s'M = 3 + 1 + ^(3) 
k{s) 

where, for / ^ 0, 

Pi(z 
Si{z) - 

Qi(z) 

PM-V     {2l~k)l     (2-)" 

fc=0      v ; 

We also have the following continued fraction representation for Si'. 

1(1 + 1) 1 
Si(z) = 

2 -+14- '('+D-1-2 
ilz I 2 1 '(,'+')-2:i) 

Thus, it is possible for us to rewrite 

18 



«.)-©* 
where, A;/   (s), A;}   (s) are just polynomials in s. 
Suppose impedance function a(s) has the following form 

_       (s2 + a0){s2 + a2) • • • (s2 + ak)     _ _    a^s) 

(s2 + ai)(s2 + a3) • • • (s2 + a2„_i) "°a2(s) 

where, c() > 0. 0 < a0 < a\ < a2 < • •• < a2n_2 < a2n_i < a2„ < oo, 
k = 2n — 2 or 2n, and ai(s), a2(s) are of course polynomials. 

For example, for 2nd order pole we need 2 free parameters, thus a(s) can 
been chosen 

a(s) = -Co(s2 + a0) 

For 3rd order pole we need 3 free parameters, thus a(s) can been chosen 

(s2 + a0) a(s) = -c0- 
V + tfi) 

For 4th order pole we need 4 free parameters, thus a(s) can been chosen 

(s2 + a0)(s
2 + a2) 

a(s) = -c0 7-3——:  
(,s2 + aij 

The denominator to the scattered solution ii(sc) can now be written as 

k{
1!\s)e-sf   ai(s) 

fc£°(s)    S    V     a2(5j / 

If we want to construct a j—th order pole at sp, we just need to choose the 
correct power of «i(s), ct2(s) and let n = j — 1, and rewrite the numerator 
using Taylor expansion around sp. 

^(^(tW^Q-W + «2(,')/\(.s)) = ^A(s - Sp)' + 0((.s - SpV)    (20) 
t=0 

where s + 1 + $,(«) = §^i 

11 



Choose Co, a0, a,\, ... a,_2 so that $ = 0 for i = 0,... j — 1. Note that 
we always want CQ and ay satisfy our assumptions. 

Thus we construct a lossless impedance function a(s), which will produce 
a j—th order pole at sp. One might ask: Can we always get a solution which 
satisfies all of our assumptions for arbitrary sp < 0? At least, in our case, 
the answer is NO! There will be some restriction on sp. 

Let's go over the 3rd pole again using the Taylor method to get a better 
picture of the procedure and the restriction. 

We are constructing 3rd order pole at s = sp, so j = 3, n = 2, 

(s2 + a) 
a(s) = —c 

k2(s) = 

s2 + b) 

e~s (s2 + 3s + 3) 

-             Pn(s)      s3 + 4s2 + 9.s + 9 
s + l + Sn(s) = -T-— =     

Qn{s) 82 + 3s + 3 

According to (20), the zeros are contained in 

(s2 + 3s + 3) (c(s2 + a){s2 + 3 s + 3) + (s2 + 6)(s3 + 4 s2 + 9 s + 9))    (21) 

expand (21) around (s — sp), we get the coefficients 

0o = 
sp

7 + 18 csp
3 + 7bsp

4 + bsp
5 + csp

6 + 6casp
3 + 9csp

2 + 24 sp
5 + 7 sp

6 + 
15 casp

2 + casp
4 + 48 sp

4 + 6 csp
5 + 54 sp

3 + 24 bsp
3 + 15 csp

4 + 54 bsp + 18 casv + 
27 sp

2 + 27-b + 48bsp
2 + 9ca 

0i = 
54 csp

2 + 7 s'pG + 30 casp + 4 casp
3 + 6 csp

5 + 162 sp
2 + 18 casp

2 + 120 A'p
4 + 

30 cs^ + 18 ca + 72 6sp
2 + 28 bsp

3 + 18 csp + 42 sp
5 + 54 sp + 96 6sp + 192 sp

3 + 
5 fcsp

4 +54 6 +60 csp3 

72 bsp + 6 casp2 + 162 sp + 54 csp + 15 csp
4 + 18 casp + 21 sp

5 + 105 sp
A + 

27 + 15 ca + 60 csp
3 + 48 b + 240 sp

3 + 9 c + 10 6sp
3 + 288 sp

2 + 90 csp
2 + 42 bsp

2 

15 



Solve PQ = Pi = 02 = 0 for a, b. c in terms of sp we get 

sp
G + 12 sp

5 + 81 sp
4 + 315 sp

3 + 648 sv
2 + 648 sv + 216 

3 sp
4 + 28 Sp3 + 99 sp

2 + 153 sp + 96 

gp5 + 9 Sp4 + 35 sp
3 + 72 Sp2 + 72 Sp + 24 

6p3 + 9 5p2 + 27*p + 24 

3 sp
4 + 28 ay3 + 99 Sp2 + 153 sp + 96 

Sp3 + 9 sp
2 + 27 Sp + 24 

If we choose sp = —4, then a = yy, b = 54, c = 11, clearly c > 0, and 
0 < a < b < oo 

a{5) = s2 + 54 

which is the same as we showed before. In fact, if we choose sp = -3, 
then a, b, c will not satisfy our assumptions. If we plot a, 6, c in terms of sp, 
we will see that in order to satisfy all the assumptions, sp can only be chosen 
approximately sp < -3.2. At sp = —3, a will be negative. For the more 
general case, we can also use this graph to determine the range of sp. For 
example, in this case, the range of sp will be the interval where the graph of 
b is above a and all of the graphs a, 6, c are above the x-axis. 

2.6    Interpretation of the Results 

Our prototype here for scattering is a constant-frequency plane wave pro- 
ceeding in direction e2. The overall acoustic pressure is written 

p(s, r, 6) = piinc){s, r, 6) + p(*c)(s, r. 0) 

where p('"c)(s, r, 9) is the incident plane wave and p^sc)(s, r, 9) is the scat- 
tered solution(wave's complex amplitude). The function p^sc^(s, r. 9) satisfies 
the Helmholtz equation and the Somrnerfeld radiation condition. 

For a hard surface scatterer we require 

Vp = 0        =>     Vp(sc) • n = -Vp(inc) • n 

For a soft surface scatterer we require 

L6 



Figure 2: plots of a,b,c 
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p = 0 =J>     p(sc) • n = -p(mc) • n 

where n is a unit normal vector pointing into fluid. 
If we assume the scatterer is a sphere centered at the origin with radius 

R. We have 

71 = 0 

X 

(-i)»+1(2« + i)[7>,.h)] .,,, _E'-"  i•;""'-"^,(7r)P„(cos9) 

n=0 Ml^) 

The poles of Phaldsoft are a^ simple as discussed above. Since v^ have 
exactly the same zeros as p(scMoes, we will just talk about p^sc' here. 

If the sphere scatterer has a specific-acoustic-impedance (neither soft nor 
hard) condition (equivalent to a(s) = -2) 

7(   \ P°S 
Z(s) = — 

then 

a(-yR)kn{>yR) + •yRk'n{-yR) 
n=0 

Thus p'":) will have a second order pole at 7/? = -2 or s = -|. 
If the sphere scatterer has a specific-acoustic-impedance (neither soft nor 

-ll(s2 + —) 
hard) condition (equivalent to a(s) = —i)2+54

u ) 

^ _ p0s{s2 + 54) 
{S) '   HG^ + ff) 

then p(sc) will have a third order pole at 7/?= -4 or s = -|. 
In [12], Sancer showed that for acoustic scattering SEM poles are simple, 

but there is no contradiction. In that reference, the impedance condition 
is not considered in the proof and Sancer used a hard acoustic scatterer to 
derive the simple pole behavior for arbitrary shape of scatterer, with which 
our results agree. 
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3    Scattering from a lossless electromagnetic 
sphere 

3.1 Introduction 

In this section, we are considering the problem of a plane wave incident on a 
sphere (with perfectly conducting surface and lossless sheet impedance load- 
ing respectively) as illustrated in figure 3. An E wave has been chosen as an 
incident electromagnetic plane wave propagating in lj direction. The scat- 
tered solution as well as the surface current density can be written explicitly 
using vector spherical harmonics. In the case 1, a perfectly conducting sur- 
face, we will briefly summarize the work done by Carl Baum, which shows 
that there exist only first order scattering poles. In the case 2, a lossless 
sheet impedance loading sphere, there exist 2nd order scattering poles for 
some mathematically chosen boundary conditions. Foster's Theorem is en- 
forced on the impedance function Zs(s) to guarantee it is a realizable physical 
boundary condition. 

3.2 Formulation of the electromagnetic scattering prob- 
lem 

Define a set of orthogonal (right-handed) unit vectors by 

li    =   sin(0i) cos(01)lI + sin(01)sin(c/)1)ly + cos(^!)l2 

12 =    — cos(#!) cos((f>i) lx — cos(#!) sin(0i) ly + sin(0j) 1 z 
13 =   sin(0i)lx -cos(0i)ly 

As shown in figure 4, lj is the direction of propagation and 12 and 13 are mu- 
tually orthogonal unit vectors, each orthogonal to l\ to indicate the polariza- 
tion of the electromagnetic fields in the incident plane wave. For convenience 
I2 is chosen in a plane parallel to li and the z axis (E or TM polarization if 
the electric field is parallel to 12) while 13 is parallel to the x, y plane (H or 
TE polarization if the electric field is parallel to I3). In free space, electro- 
magnetic plane waves have both electric and magnetic fields orthogonal to 
li. Thus only 12 and 13 are concerned. This removes the L functions (details 
are shown later) in the expansion (plane waves have zero-divergence fields). 
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Figure 3: 

//.. 

sheet impedance Zs(s) ^ 
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Figure 4: 
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We can use the relations between Cartesian and spherical coordinates 

x = rsin(#) cos(^) 

y = rsin(0)sin((/>) 

2   =   7C0s(#) 

lx = sin(#) cos(</>)lr + cos(#) cos(0)l<> — sin((/»)l0 

ly = sin(0)sin(0)lr + cos(^)sin(0)lfl+ cos(0)l0 

1,    =   cos((9)lr -sin((9)le 

to express the incident-wave unit vectors in terms of (0\,<j)i) and (8, 0) as 

li    =    [cos(0!) cos(^) + sin(01)sin(0)cos(0 — 0i)]lr 

+    [- cos(6>i) sin(6>) + sin(^i) cos(9) cos(</> - <pi)]le 

+   [-sin(^i)sin(0-0i)]l0 

12   =    [sin(^i) cos(#) - cos($i)sin(#)cos(0 - <t>i)]lr 

[sin^) sin(#) + cos(6'1) cos(8) cos(<p - 0i)]lo 

+    [cos(0i)sin(0-0i)]l0 

I3   =   — siii(8) sin(<j) — <j>i)lr 

- cos(8) cos(0 - 4>i)le 

- cos(c£-0i)]!«/, 

Having the direction of incidence and two polarizations expressed in spher- 
ical coordinates we can go on to express the response to some delta plane 
wave functions. For an incident delta function plane wave we need spherical 
harmonics and vector wave function in which to express the expansion in 
spherical coordinates. In spherical coordinates we have the common differ- 
ential operators as 

VF   =    lr^-F+le--^F+lli>—^7-^-F 
or r do r sin(0) 0(p 

V • F ~^-{r2Fr) + —}—jL(sm(8)Fe) + -^—J^F, 
rz or rsm(8)o8 rsm(8)o(j) 

rsm(8)o8 rsm(8)o4> 

rsm(6)d8 r or r or r 88 
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V.,F   =   U—F + l^-^-r—F 
oB sin(#) o<p 

Vs-F   =   -r4r^(sin(W) + T^^ sin(0) cW siri(fi') d(j) 

sm(6>) c*0 sm(0) a<p sm(#) d(p 

Spherical Harmonics 

The scalar spherical harmonics can be written as 

y„.m,s(M) = P^W0)){ 
cos(m(j)) 
sin(m(p) 

where P„    (x) is the Legendre function defined as 

Jm i In 

TO = (-Dm(l - x*r^Pn(x),     Pn(x) = P°(z) = ^^(x2 - D» 

Vector spherical harmonics are defined as follows 

P„,m,p(M) = Yn,mj>(e,4>)lr 

^cnjn,p\• i *P) ~ V s i n,m,p\• •> rV ~  -*-r  ^   *Wi,m,p 

Rn,rn,p{e> 4>)  =     V,  X  Pn,m,p((9, 0)      = - lr  X Q„ m,p 

They also are mutually orthogonal in an integral sense on the unit sphere. 
The spherical scalar wave functions are defined as 

Z%m>p(~/f) = fU(1r)Pim\e,<t>) 

where /,, (7/) = in{'f') , f„ (-yr) = £,,(77-) are modified Bessel functions. 
They satisfy the Wronskian relation 

W{sin(s),skn(s)} = sin(s)[skn(s)}! - [sin(s)]'sA;n(s) = -1 

7 = [s/j,(a + st)}1/2 with /i,cr, e are permeability, conductivity, permittivity, 
respectively, s is the variable of the two-sided Laplace transformation. Co- 
efficients times the scalar wave function E!„)miP(7f) when summed over all 
possible indices satisfy the scalar wave equation which for each function we 
can write in operator form as 

[v2 - l2}^mJvl = 0 

23 



From the solution of the scalar wave equation one constructs as usual the 
solutions of the vector wave equation of three kinds. 

£Sn,P(7r) =      iVHi?m,p(7r1 

M£L,P(7r) =   V x [fSgUCTf)] 

NOLPM = ^v x M<lP(7r) 

Note that all three kinds of vector wave functions satisfy the vector wave 
equation in Laplacian form which we can summarize as 

[V2 - 72] 

f(i) 

M(l) = 0 
N, o 

We can also write a curl curl wave equation for only the second and third 
kinds of vector wave functions as 

[V x V + 7
2] M® m,p 

yv(() 
I *n,rn,p 

= 0 

The three kinds of vector wave functions have some interrelations as 

Ml%,p(jr-)=     -TFxlg^M 

^!L,P(7r) =    iV x Mi',L,p(7r) 

It is also useful to write them as 

i-llljrn = UPMYZwio, <t>) + [f«\ir)}(l,,,,M>i <i>)hr 
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Plane wave in spherical coordinates 

As shown in figure 3, the delta function plane waves (transformed) can be 
written as 

oo       n 

l2e-^r = E E E [<m,p^lP(7r) + b'n<mJ£lpM] 
n=l m=0 p=e,o 

oo       n 

r3e-^f= E E E Km,ML(^i - O^J^M] 
n=l 771—0 p=e,o 

where 

_ro_i        1/      1V,+ 1   2n+l   (n-m)!PAm)(008(00)   f    ~ SUl(m<fti 
ar(,m,p lz       AO.mU     xi        n(n+l)(n+m)!m      sin(fli)        |     COs(m0i) 

L/ _ ro _ I        1/     iy.  2n+l   (n-m)!dP^m)(cos(ei))  /   COs(m(/>i) 
°n,m,P lZ       ^.mJV,     ^   n(n+l)(n+m)! <J0i |sin(m0i) 

Note that we have 

-v x [f2e-
7fi'rl = r3e-7fir" 

7 

-V x [r3e-7fl'1    =    -i2e~ll"v? 

7 

which is associated with the curl relations between the Mn,m,p and Nn?m,p 
functions. Furthermore any divergenceless electric field expansion (E) can 
be converted to a magnetic field expansion (H) by dividing by the wave 

impedance Z of the medium and changing Mn\n,p to —Nn;m,p and Nn}m,p to 
Mn,m,p- To go from H to E multiply by Z and change Mn,m,p to N„,m,p and 
/V^      tn - A./^ 

Solution of the scattered field 

Define our incident plane wave as an E wave (TM wave) 

Emc(f,s) = E0iV
7fl" 

^0 
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Expand the fields for r < a as 

£„(r-, s) = £0 J] Y, E K•,>•(70 + 6;',m,piV^iP(7^] 
n=l m=0 p—e,o 

j-, OO H 

An(f, «) = ^ E E E [C.,$!lp(7f) - <nJ*!$n,M] 
n=l m=0 p=e,o 

The solution of the scattered fields for r > a can be written as 

OO Tt 

n=l m=Op=e,o 
j-p       oo        TJ. 

^c(r, S) = f Y. E E Km,M2U^ - <m^a,(7f)] 
n=l m=0 p=e,o 

3.3    Perfectly conducting sphere 

Carl Baum showed in [2] that there only exist simple poles for perfectly 
conductor sphere. Here we will just briefly repeat the same argument in our 
context. Constrain the tangential electric field to be zero on r = a, we have 

lr x [Einc(f, s) + Esc(r, s)} = 0. The we get 

lrxKim)PM^)P(7al0 + <'im)PM^iP(7arr)]   =   0 

lrX[6;,m)pyV^)P(7arr) + 6^m)PiV^iP(7arr)]    =   0 

This give equations for the coefficient as 

n(ia)    , 

'm,p KM    n-7"'p 

,,// = hain(l«)}'  ,, 
[-yakn(-ya)]'   n'm'p 

To see that the poles must be simple poles we just need to show that all 
the zeros of kn(s) and skn(s) are simple zeros. Since kn(s) satisfies spherical 
Bessel function we have 

d2 d 
s2 — kn{s) + 2s—kn(s) - [s2 4- n{n + l)]kn(s) = 0 

dsz ds 
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Suppose the zero is higher than first order, say a 2nd order zero at sa ^ 0. 
Since both kn(s) and k'n(s) have to be zero at sa, so does &"(s). Thus, the 
zero must be at least a third order zero. Repeat the same process, we will 
eventually have all the derivatives at sa to be zero, thus the function must 
be identically zero. So there exist only simple poles for a"'imp. The argument 
for 6"'mp is similar as [s/c„(s)] satisfies the Riccati-Bessel equation 

2[sfV\S)]-Sf«\s) = 0 
s2 + n{n + 1) ds2 

For more details of the perfectly conducting sphere including surface current 
and charge densities please see [2]. 

3.4    Scatterer of spherical sheet impedance loading 

3.4.1     Lossless sheet impedance 

Spherical coordinates (r, 8, <p) as in figure 3 are one of the few coordinate 

systems in which solutions of Maxwell's equations are separable. In partic- 

ular let us assume a sheet impedance Zs(s) (a scalar) which is located on a 

spherical surface give by r = a and which is independent of 9, (p. This sheet 

impedance relates tangential electric field and surface current density as in 

[3], we have 

17 • E(a,9,(j),s) = Z3(s)Js(e,<t>,s) 

1( =   1   — lrlr = transverse  dyad, 

1   = identity   dyad 

~ stands for two-sided Laplace transform. The surface current density is in 

turn related to the magnetic field via 

C x [ll(a+, 0, </», s) - H{a-,e, 0, a)] = .7,(0, </>, s) 

The sheet impedance function Z3(s) also has to satisfy Foster's Theorem to 

guarantee lossless boundary conditions. 
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Foster Theorem 

In [1], a positive real function F(s) is an analytic function of the complex 
variable s = a + ju, which has the following properties: 

l.F(s) is regular for a > 0 
2.F{a) is real 
3.C7 > 0 implies 5R[F(s)] > 0 
A reactance function is a positive real function that maps the imaginary 

axis into the imaginary axis. 
Theorem: A real rational function of s is a reactance function if and only 

if all of its poles and zeros are simple, lie on the jcj-axis, and alternate with 
each other. In other words 

(S2+U,0
2)(S2+u;!).-.(S2 + u;2n) 

is a reactance function, where k = In — 2 or 2n, K > 0, 0 < uQ < uj\ < 
•     < UJ2n-\   < U<2n  < OO 

Theorem: A rational function of s is a reactance function if and only if 
it is the driving-point impedance or admittance of a lossless network. 

3.4.2     Solving the scattering problem 

Matching the boundary condition on r = a, with the sheet impedance and 
continuity of the tangential electric field gives 

1, • [Eim:(a+,8,<p, s) + Esc(a+J.(p,s)] = 1< • Ein(a-,6,<p,s) 

= Zs(s)js(d,(p,s) 

= Za(s) x [Hinc(a+, 6, <p, s) + Hsc{a+. 9, <p, s) - Hin(a-, B, <f>, s)] 

Plugging in the expansion we derive a system of equations involving a" m   , 

K,m,p> <m,pi Km,V   S°lve for a'n,m.p and K,m,p ^ get 

// n,rn,p a. n,m,p i    .      Z0 + •M-){-1a)2in{1a)kn{1a) 

b' ill     "n,m,p 
n• ~ l - ^j[7«„(7a)]'[7afcB(7a)]' 
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Now the surface current density is 

Zs(s) 

'o EEEKw»(7«)C(^) + C,P^4„(M)] 
ZJs) ^ ^ ^      '  "  '  *       7« 

3.4.3    Existence of 2nd order poles 

The coefficients we care about concerning the existence of a second pole are 
Cl = lS^a"^v and °2 = {l't(lha bn,m,P- Let's give a simple example showing 
that a second pole does exist for coefficient c2. For simplicity, let's assume 
ja = s. Consider the sheet impedance function 

U*) 
(±e2 + e + |)s 

*2 + ¥ + \ 

Clearly Zs(s) satisfies Foster's Theorem with K  > 0 and LUQ  >  0.    The 
expansions of in(s) and kn(s) are 

For n = 0, the denominator of c2 is 

De(s) = (4e-2s + 4)s2 + (4e2 + 8e + 4) s + 1 + 2e1-2s + 2e + e"2s 

It is easy to see that De(—h) = 0 and ^De(s)|s=_i = 0 or in Taylor expan- 
sion around — ^ 

De(S) = ((l6e + 4 + 4e2)(S + 0V(-fe-^e2)(S + i)3+O^S-fiy 

Thus we derive a second order pole at s = — ~. 
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In general, we want to construct a sheet impedance function Z„(s) = 
, £* . such that c-2 have a second order pole in the left half plane of s mean 
while K > 0 and ui > 0. The denominator of c2 has the following form 

De(s) = Ks+ I -s2in (s) - s3—in (s) - uin (s) - us—in (s) J kn (s) 

+ f -s3in (s) - s4—in (s) - suin (s) - S
2

UJ —in (s) J — k„ (s) 

We want to solve De(s) = 0 and ^De(s) = 0 for K, u) in terms of s. The 
solution sa must satisfy sQ < 0, K(sa) > 0 and w(sa) > 0. For n = 0, that 
is to solve 

2 Ks + s2e~2s + s2 + LO e~2s + u = 0 

IK + 2scr2s -2s2er2s + 2s-2uer2s = 0 

The solutions are 

K 

jj 

s(e-4s + 2e-2s + l) 

2se~2s + e~2s + 1 
s2(-e-2s + 2se-2s-l) 

2se"2s + e-2s + 1 

From figure 5,6. approximately when s is chosen from —0.64 to 0, both K 
and u> will be positive. Pushing the poles to even a higher order is not done 
here. In order to construct a high order pole (including the 2nd order case), a 
transcendental equation has to be solved analytically which in general is not 
possible. This is different from the perfectly conductor sphere case, where 
only a system of linear equations need to be solved. 

It seems to us that it only works for coefficient c2 with n — 0. For n > 0, 
there is no region in the left half plane of s. Although we don't have a rigorous 
proof of that, it seems to be the case. We tested with many different n, K 
and u. K and u will have either different signs or both will be negative. 
For coefficient C\, it doesn't work either. We tried to include more terms in 
the Z„(s) according to Foster's Theorem (i.e. more Wj) with larger n, but it 
is not helpful for this case. Figure 7,8 show some results of different cases 
with different n , K and u,\. There are no regions for which K and u> are 
positive simultaneously. It is likely that for lossless sheet impedance loading 
boundary condition, most scattering poles are first order. 
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Figure 7: 
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Figure 8: 
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4 Other scattering results 

In [6], a canonical problem consisting of a junction in a transmission-line 
(single conductor plus reference) of a common characteristic impedance Zc 

on both sides of the junction has been considered. Scattering from such a 
junction is only forward and backward. It is shown that scattering from a 
lossless, reciprocal network at a transmission-line junction can have a sec- 
ond order s-plane pole. In [5], Carl extend the previous results to a more 
complicated scattering at a junction of transmission lines. A transmission- 
line structure which mimics polarization has been considered to make the 
problem even closer to the electromagnetic case. An incident wave is propa- 
gated as two orthogonal polarizations on a four wire transmission line. This, 
in turn, scatters forward into a similar four-wire transmission line support- 
ing two orthogonal polarizations. Those work gives an closer simulation of 
the electromagnetic-scattering case, contribute to the discussion concerning 
3-dimensional electromagnetic scattering from lossless, as well as perfectly 
conducting targets. 

5 Some analysis on the forward-scattering the- 
orem on the scalar wave equation 

5.1     Formulation of the scattering problem from a scalar 
wave equation 

We start from the simple scalar wave equation in a 3-D region f2, and suppose 
c= 1 

utt = V2u 

a(x)ut + (3(x)un + ry(x)u = 0 

Let's call Bu = 0 the boundary condition, un is the outward normal. 
Simply applying a Laplace transform we get 

s2u = V2u        Bu = 0 

From now on, all the computations will be done in the Laplace s domain, 
except when otherwise indicated. We want to explicitly compute the scat- 
tered solution trsc)(r, s), assuming an incident plane wave vSinc'(r, s) coming 
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in the z-direction (u = uf-ac^ + u^nc^). Let Si denote the unit sphere, pa- 
rameterized by the usual angles 9, <p.  Suppose u is the incident direction , 

uj\ = sin 9' cos <// 

UJ2 = sin 9' sin iff 

LO3 = cos 9' 

Suppose the incident plane wave in the time-domain is u^nc\x, t) — 
A(t — u • x) propagating in the Q direction. Then w%nc'(x, s) = A(s) • e-SuJ'x 

( just the Laplace transform of u^71^ ). The boundary condition becomes 
B(s)iSsc\x, s) = — B(s)u'tnc'(x, s) , B is the operator for the boundary con- 
dition. Suppose we write the scattered solution u(sc\x, s) = A(s) • U(x, s; u). 
Then B(s)U(x,s;u) = —B{s)e~sux on the boundary. We can expand U in 
spherical harmonics outside of a sphere containing Q. 

oo        n 

U(x,s;0) = J2 Y, Umn(s-ij)Y:'(9^)kn(rs) 
n=Om=—n 

When r —» oo, kn(rs) ~ f £^j- , kn is the modified spherical Bessel's function 
(good at infinity), let x = rq, r > 0 , q E Si q is parameterized by (0, y?), 
thus [/(£, s; «3) - #(r, 0, if, s; 9', if') ~ ^v(d, if, 9'. if', s) and 

oo       n 

v(9, y>, 9'. if\ s) = J2J2 s~l(jmn{0\ /- s)Y•(0, if) = v(q, Q, s) 
n=Om=— n 

5.2    Representation Theorem 
f)   e-\x-v\*        e~\x-y\s     {) 

«< 

an 

Here, the parameters .T, ;y are vectors, ^-is the outward normal derivative, 

Co, s have been omitted for simplicity (always there), dAy means integrating 
over y-area. 

Proof: 

„e"rs , a2       2d Ne-rs 

V2     =    ( 1 )  
r dr2      r dr     r 

p-rs 
=   s2 — 

r 
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Figure 9: 

Ball of radius R centered at x 
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r is the radius centered at x 

fiWV2-    - (V2u(s<;))- -dv = 0 
i 6 /_o . i.»u 6 

D 

by Green's identity, the left hand side also equals to 

f   f Q   e~\x-y\s e-\x-y\s      Q 

/ / [u{sc)(y)(~-{ r) - ~{ A^-u^\y))]dAy+ (22) 
J J "Vy \x - y\        \x - y\   ai/y 

„-Rs       p-Rs „-Rs      n 

47ri?VSc)(y)(-*£
7r - -#) - ^(^-fi^fo))]^-        (23) 

\x-y\ = R 

e'ts     e_e\     e-". d 
Aire2[u^(y)(-s r) (— ^(y))]^ (24) 

e tz t     avy 
\x-y\=t 

dAy means integrate over a sphere with surface area = 1.  In equation (22) 

^(£-u{ac)(y)) is ~ su^^ + o(^) and it's easy to show that (23) -> 0 

as R —> oo for 5Rs > 0. Equation (24) —> 47ru(sc'(x) as e —> 0 (behaves like a 
6 function). 

Thus, we derived the representation for 

i   r r n f>-\x-v\a     f,-\x-v\»   D 

an 

For the far held pattern, we want to look at terms like UmrersvSsc\x) , 
r—»oo 

because that's what u looks like. (Note fixed origin x — rx, x € S\) 

I |2        I    « |2 2        n    - .    i    |2 |x — y|   = \rx — y\   = r   — Zrx • y + \y\ 

2-       Al)\2 -       ,n,l, = ''V1 - ~x ' y + -^ = r-x-y + Oi-, 

p-\x-y\s e(iy)«+o(i) 
-> e

(xy)ii    asr-^oo 
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Thus , we have the representation for v in the far field 

v(x,u,s) = ~ f f[u{sc)(y)(-^e^a) - {-^u(sc\y))e^s)dAy 

an 

Note e{iy)s = ii{lHc)(y;-x) 
Apply Green's identities inside Q (for incident wave, good at the origin) 

)V ul'"-'( y,-x) - V-u—Q/:<-'K    'U/; —x)dVy 

du{mc){y: 

duy 
-*>)- .(~>« -xftdAt ti(iBC)(y;w)( 

similarly, apply outside il. and use the radiation condition (JR.s > 0) 

-,,,o(:,;;ii)(^iz£)) _ (3^0)aM(!,. _i)]dAv. „ 
an 

5.3     Reciprocity from boundary conditions 

Let us assume general boundary conditions like 

dii 
a(x)su + f3(x)- h Mx)u = 0 

dvy 

rewrite as /5^ + X(s)u^ = -P^1 - \{s)u^ 
Consider 2 cases: 
i) Dirichlet: 0 = 0, A = 1 
ii) mixed: /? = 1; diX(s) > 0 

case i): 
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v(x,u,s)   =    -j-f f[u^\y)(—e^y>)-(—u^(y))e^a)dAy 
J    J y y 

an 

47TJ J OVy OVy 
an 

47r7   _/ (9j/y duy 
Oil 

47ry  ./ di/y 9t/y 
an 

an 
=   f (— u), —x, s) 

case 11): 

4nJ  J dvy dvy 
an 

1   r /•r,a&C"c>(y;a)Wiwd/ „(-c)        dji^%-i) 

an 

+A(s)u("lc)(2/, -£)[«(inc)(y;£) + £(s<%^)] 
-A(.s)f/(sc)(y,w)[u(iw:)(y; -rr) + u(sc)(</; -*)] 

47ry y dfy d^y 
an 

+A(s)[u("'c»(y, -x)^•%^) - u(sc>(y^)«(sc)(y; -*)] 

(r0fi(iw%a).,(«),...    ^     .,Hnc)/....^^(ac)(»;-*) 
47T 

an 
v(-u),-x,s) 
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There are more general cases in references [8] [7]. 

5.4    Forward scattering theorem based on energy the- 
ory 

Define the total energy to be 

I futu„ 
dt 

dD 

Integrate the outer flux term f J"|| • |^ over time, we have 
.9 

(by Parseval , assume real u) 

du   du 

du(y,s)       r°°   f  f  „,      ,   du(y,-s) -rjh^-nh^ Or 
s 

du(y,-s)    _     f f^inc),    ^   du{inc)(y,-s) 
su(y, s) •      ^     '    =   j j su^(y, s) • £' '- (25) 

+//^)(,)S).^qp) (26) 

+//^)(y,S).^^ (27) 

+lfs^{y,s).^^l (28) 
dr 

s 

10 



term (28) when R is large and s purely imaginary, 

p—Rs „Rs 

R2(s—-v(y:ij;s))(s—v(y,u;-s))dA 

= -s2/     v(y,ui;s)v(y,u;-s)dA 

5, 

term (25) = 0 , since it"10) = e-
Rs°y => R2s2J fu • y = 0 

Si 

term (26) + (27) ~ 

R2j I (se-^y • —v(y, w; -a) + —v(y,CJ; S) • su • ye•* 

s] 

= Rs2 ! fe^1-^ • v{y, w; -a) + w • ye-8'*1-^^, w; a) 

'  Si 

Suppose il> = <':i, in coordinates LU • y = cos ft 

I  f{eRs{1-^]-v{x^;~s)   =    /"     [* eRs(1-coa6)-v(e,tp;-s)smdddd<p 

Si 

Rs 

11 



j.ye-R*(i-*v)v(z^.s)   = e-Rs{1'cose)-v{e,^s)cosOsined0d^ 
Jo    Jo 

i- /"* r v(d,tp; s)cose4;e-Rs{1-co*H)d^ 
R,s J0    J0 dO Rs 

2TT, 

~Rs 
[v(n,0,-s)e-2Hs + v(0.(),-s)} 

+ 
2- 

ih r r ^e[v{e' ^s) cosd}eRa{i-c°se)ded<p 
i 

While, the last step is not completely obvious here. We've used the 
method of stationary phase to determine the asymptotic behavior for R large. 
For example, 

I ^-[v(0,<p;s)cos6}eRs{1-cose)dO   ~   ^-[v(d,<p;~s)coa9] 
d6l d9l 

2n 1/2 
!7T/4 

combine (25) " (28) energy flux for R large , we get 

// 
su(y,s) 

du{y, -s) 
dr 

,//„ (y,v; s)v(y,u;; -s)dAy 

+2irs[v(-u),u); -s)e2Rs - V(£J,CJ\ -S)\ 

+2TTS[V(-LU, LJ; s)e~2Hs + v(u, u>; s)] 

since 2irs[v(— CJ,CJ; —s)e2Rs + v(—u>,u; s)e 2Rs] is odd in s, so 
f2vs[v(-Cj,ur, -s)e2Rs + «(-w,w; s)e~2Rs] = 0 

Energy flux: 

" /   / v(y, u; s)v(y, u\ —s)dAy + 2-KS[V(OJ, a); s) - V{CJ, U; —S)} 

For a lossless scatterers the net energy fiux=0 i.e. 

12 



/     v(y,u>;s)v(y,L);-s)dAy= [v(u),u-,s)-v(u>,u>\-s)] (29) 

Si 

which is the same as the ones in [4] analogous to (2.4) (5.6) (6.6). 

5.5    Numerical results 

Suppose we have the following wave equation and Dirichlet boundary condi- 
tion. 

s2u = V2u 

u = 0 , r = l 

Assume an incoming plane wave is in the z-direction i.e. 

^(inc) _ e-*(0,0,l)(x,y,2) _ g-sz 

We want to compute the exact scattered solution u(sc\ 

5.5.1     Background information 

Legendre's polynomial and spherical harmonics    use Rodriguez' for- 
mula, the Legendre polynomial can be written as 

1     dn 

Pn(x) = ^—,—(x2 - l)n 
v  ;      2nn\dxnK ' 

Orthogonality relation: 

/   Pn.(x)Pn(x)dx = —^— 6, 
J-\ 2n+l 

If the problem does not possess azimuthal symmetry, we will need asso- 
ciated Legendre functions. For m = 0, ±1, ±2,..., ±n 

Associated Legendre functions are 

( 1 \m Jn+rn 

P-(X.) = i-ii-(i - x2r'2^-~-(x2 -1)" 
" v 2"n!  v '      dxn+m 
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Properties and Orthogonality relation: 

(n + my. 

f P2(x)P?(x)dx =     2,1[W + m^tl y_i 2n + 1 (n — mj! 

Notes: 

1. P„(:c) forms a complete orthogonal set for the expansion of functions 
of the variable x 

2. P"'(cos(9)) • eimv forms such a set for the expansion of arbitrary func- 
tions on the surface of a sphere. 

Spherical harmonics are defined as 

2n 4- 1 (n — rnV 

Orthogonality relation: 

r-27T        r* 

JilT JO        JO 
nil     Turn 

Modified spherical Bessel's functions    Hankel's symbol 

(n,k) 
T^ + n + k) 

kT(± + n-k) 

Modified spherical Bessel's functions are the solution to the equation 

zV + 2zJ - [z2 + n(n + l)]w = 0 

£W«) 
'e-nW2Jn(2eW2) arg z e  (_7I.] n/2] 

14 



Expansion of in(z) 

in{z) = (2z)-l[R(n + i, -zY - (-l)nR(n + \,z)e~'\ 

Where 

M*)      =      \l—.Kn+dZ) 

n(2z)-le->J2(n + lk)(2zY 2' 
fc=0 

=   ^-*«(» + 2'2) 

Notes: 
in./cn are the particular solutions we will be using later on.   in behaves 

good at origin, while kn behaves good at infinity. 
Some useful expansions 

00 

Z COSfl 

oo i  

=   £(2n + l)[J-/n+i(Z)]Pn(cos0) 
n=0 ' 

oo 

=   ]£(2n + l)tn(.z)/>T1(cos0) 
ii   o 

—zcosB 
OO I  

=   £(2n + l)(-l)»[J£/^|(*)]Pn(cos*) 
n=0 * 

oo 

=   £(2n + l)(-l)nin(z)Pn(cos0) 

5.5.2     Computation of the solution 

We already have the expansion for the incident wave 

^(inc) _ e~sz _ ^-srcos 
e-Srcos* = J2(2n + l)(-l)"zn(sr)Pn(cos0) 

n     0 
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The general scattered solution(in this case) has the form 

oo     m—n 

=   E E anm(s)kn(sr)Y•(9,<p) 
71=0 ro=—n 

oo 

=   y^an(s)fcn(sr)Pn(cosfl) 
n=0 

The second line comes from azimuthal symmetry. In our case, the system 
is symmetric about ip, thus m = 0 i.e. no m dependence, then we have a 
simplified form. 

Applying the boundary condition, at r = 1 

an an 

n is the outward normal, i.e. r in our case (sphere). We get 

ail(s)[a(s)kn(s) + spk'n(s)] = (2n + l)(-l)n+1[a(s)in(s) + s/3i'n(s)} 

(-iy^(2n+l)[a(s)in(s) + s(3i'n(s)} 
n[ }~ a(s)kn(s) + s[3k>n(s) 

Then 

^-t^1^•:*^•*** 
71 = 0 a(s)fcn(«) + s/?fc;(s) 

Let's look at the far field pattern r —> oo, kn(sr) —> f5— (asymptotic' 
behavior) 

r(~>   =    e- TT ^ (-l)"+1(2n + l)[a(s)in(s) + s0i'n(s)\ 

r   2^ a[o(a)U«)-+ 

By our previous definition 
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"(I'U''4)   =    2g .W.)*,(.)+ ./><(.)] P"(C"9) 

=   -£\n(s)Pn(cos0) 

For this u, (29) should hold. 
For simplicity, let's assume a Dirichlet boundary condition i.e. a(s) = 

1. 3 = 0 to compute the singularity expansion and check the numerical re- 
sults. 

5.5.3     Singularity Expansions 

We will perform a singularity expansion as we did in [4], finally we will see 
it holds (numerically verified). By using the expansion for in. kn we have 

(-l)"+1(2n+l)?n(5) 
Vn{S)     =        

, ^ (2s)-1 [R(n + I -s)e° - (-l)»fl(n + *, s)e-"] 

skn(s) 

ir+1(2n + l 
7r(2s)  ie sR(n + ± s)s 

2n + 1) [(-l)n+1R{n+^-s) 2s     1 

R(n + |,s)s 

Consider 

(-l)«+i/e(n + i,-a)      Q?(s 

H(n+|,s)5 Q'2
l(s) 

It is easy to see that Q", Q% are polynomials of degree n ,n+l respectively. 
From the property of in, kn, we can conclude Q", QJJ do not share zeros and 
zeros are simple. 

Suppose Q^is") = 0 for j = 0,1,.. .n 

Qn{s)   _     " 67 
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c; 
Proof of Cj1: 

Suppose Q2(s) = B]Jj=o(s ~ s")> we multiply ^jy^ 

by (s - s",) and set s = s",. We get 
s—«" £?= 

C" 

''"~BIUW*?-*?)~i<EW 
Thus, we have the singularity expansion 

77 

C? 
.z—' s — s" s 
j=0 3 

V = -Y^Vn(s)Pn(c0s6) (30) 
n=0 

5.5.4    Connection with the forward-scattering theorem 

In [4], Dr. Carl Baum suggests the following form for the scattering dyadic, 

-\s-Sa]tr 

A(lr,li;s) = ^2 -cQ(—lr)ca(li) + entire function 

(In our case, it's just (30)) and derives the following equation, 

•S'l 

•lr) • S (lr, 1-; -sa) = 4(-li) 
7a 

(31] 

which we are going to verify in the next part. In order to derive an 
analogue of the above equation from (29), we will follow the same procedure 
as in [4]. Since there is an infinite sum in the integral, we will also use the 
orthogonality to simplify the equation. 

In (29) , let's multiply both sides by s — s£, and take the limit s —» s•, 
(s" is one zero of Q% , s• ^ 0) , using the orthogonality of Pn we get 

/•Oil °° 

£ /   ^^Ce2s«P4cos0)-VtVi(-^)Pn(cos0) 
•2TT 2n + 1 

C;ie^P„(cosO) 

•18 



Table 1: Coefficient C? for n = 1,..., 5 j = 0, ...n 

-1 -1 -1 -1 -1 
2 2.564e-016 - 3.464H -5.1583 + 0.67542i 2.2877 + 6.90411 8.3088 - 5.0128i 

2.564e-016 + 3.464H -5.1583- 0.67542i 2.2877- 6.904H 8.3088 + 5.0428i 
12.317 -2.2877 - 30.596i 111.19 

-2.2877 + 30.596i -62.905 -f 12.51H 
-62.905- 12.51 li 

Table 2: roots of Q%{s) for n = 1,.... 5 j = 1, ...n (s% = 0) 

-1 -1.5 + 0.86603i -1.8389 + 1.7544i -2.1038 + 2.6574i -2.3247 + 3.57H 
-1.5 - 0.86603i -1.8389 - 1.75441 -2.1038 -2.6574i -2.3247 - 3.5711 

-2.3222 -2.8962 + 0.86723i -3.6467 
-2.8962 - 0.86723i -3.352 + 1.7427i 

-3.352 - 1.71271 

[ v(-sl)[Pn(cose)}2 = -^P„(cos0) 
J Ait sa 

Z_> _sn _ _„n 
j=0 

e~2a"+- 
si -s' 

r*27T     rir rZ7T     fir 

/    / [P"' Jo    Jo 

2TT 
cos 6)}2 sin Bd6dp = Pn(cos0) 

Simplifying we get 

cy 
-s" - s? 

-e-2sS + 
—s; -='W1) (32) 

Finally, this is the equation analogous to (31), which we are going to 
verify numerically. 

C" are the coefficients of the singularity expansion, s" are the zeros of 
Q'-lis), which are also the zeros of kn(s), s• is anyone of s", s„ / 0 

For your reference, I computed all the C" , s", error=|LHS-RHS| of (32) 
See Table 1, 2, 3 
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Table 3: Error for each s• and for n = 1,..., 5 

M 

0 1.1525e-014 2.1245e-013 4.1905e-012 5.1391e-011 

1.2012e-014 2.1245e-013 4.1905e-012 5.1391e-011 

3.6948e-013 1.9759e-011 6.9491e-010 

1.9723e-011 3.9091e-010 

3.9096e-010 

5.5.5     Legendre's addition theorem 

If we apply Legendre's addition theorem [10] to the above results, we can get 
a more general solution for arbitrary incidence direction, 

let f\, f2 be two unit vectors with components given by 

f\ = (sin #i cos fa, sin 0X sin <p\, cos 6X) 

r2 = (sin 92 cos <j)2, sin 82 sin <fo, cos 02) 

The angle between f\ and f2 is 7 , defined by 

f\'T2 — cos 7 = sm #1 sin #2 cos(0i — (^2) + cos #1 cos 02 

Pn(cos7) = 7^ *m,   ^ rn('.PT(cose1)P^(cos92)cosm^ - <p2) 

t0 = 1 and eTO = 2 for m > 0 
In terms of spherical harmonics , we have 

A'TT   

p"(rV"2) = 2^TT ^ n:"(n)nr(r2) 
m=—n 

Thus, the incident plane wave can be written as 

u(mc) = X>n+l)(-l)"in(Sr) J\r 
n=0 m=0 

(n — m)! 

(n + m)\ P"'(cos ^1) P„m(cos &) cos m(0i -(/>.) 
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or in terms of spherical harmonics 

oo A n 

L—' In + 1   ^—' 

in which, we can define fi as the incidence direction and i\ as the viewing 
direction for appropriate choice of 7. 

Thus, the scattered solution(30) becomes 

OO .71 

n=Q m=—71 

which has almost the same form as appears in the [4]. This form can 
be used to determine any incident direction f 1 and scattered direction r2 for 
appropriate choice of 7. 

6    Conclusion 

We show that for acoustic scattering problems arbitrary order scattering 
poles can be constructed with certain lossless impedance boundary condition 
imposed on the sphere. While for the hard and soft sphere, there only exist 
simple poles. For the electromagnetic scattering problems for spheres with 
lossless sheet impedance loading boundary conditions, 2nd order scattering 
poles can be constructed. There only exist first order poles for the perfectly 
conductor sphere. The validity of the acoustic forward-scattering theorem 
(scalar wave equation) have been analyzed as well as some numerical exper- 
iment of the theorem. 
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